
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Queue (array based)

© 2022 Arthur Hoskey. All
rights reserved.

Goals

• Describe the structure of a queue and its
operations at a logical level

• Demonstrate the effect of queue
operations using a particular
implementation of a queue

• Implement the Queue ADT, using both a
an array-based implementation and a
linked implementation

• Discuss Big O runtimes of operations for
array-based and linked implementations.

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 We will start by looking at the logical view
of a queue…

© 2022 Arthur Hoskey. All
rights reserved.

Queues
© 2022 Arthur Hoskey. All
rights reserved.

Queues
© 2022 Arthur Hoskey. All
rights reserved.

Queues

Queue

An abstract data type in which
elements are added to the rear and
removed from the front; a “first in, first
out” (FIFO) structure

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 What operations would be appropriate for
a queue?

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 Transformers
◦ makeEmpty
◦ enqueue (Insert or Add)
◦ dequeue (Delete or Remove)

 Observers
◦ isEmpty
◦ isFull

© 2022 Arthur Hoskey. All
rights reserved.

change state

observe state

Queue – Logical View

 What does a queue look like if we insert
the following elements (in the given
order):
11, 14, 32

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 Insert: 11, 14, 32
 Here is the resulting queue…

© 2022 Arthur Hoskey. All
rights reserved.

Queue

11 14 32

Front Rear

Queue – Logical View

 What if we remove an element?
 Where does it get removed from?
 Can we remove from in the middle?

© 2022 Arthur Hoskey. All
rights reserved.

Queue

11 14 32

Front Rear

Queue

11 14 32

Front Rear

Queue – Logical View

 What if we remove an element?
 Where does it get removed from? THE FRONT
 Can we remove from in the middle? NO

© 2022 Arthur Hoskey. All
rights reserved.

Queue – Logical View

 Queue after removing one element.
 Can we add an element after we remove. For

example, Enqueue(77)?
 Where does it get added?

© 2022 Arthur Hoskey. All
rights reserved.

Queue

14 32

Front Rear

 Queue after removing one element.
 Can we add an element after we remove. For

example, Enqueue(77)?
 Where does it get added? REAR

Queue

14 32

Front Rear

Queue – Logical View
© 2022 Arthur Hoskey. All
rights reserved.

77

Queue (Array)

 Now we will look at an array-based
implemenation of a queue.

 Exam questions will be based on the slide
implementation of the array-based queue
and not one from another source.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

Here is the interface for the Queue ADT:

public interface Queue {
boolean isEmpty();
boolean isFull();
void enqueue(int item) throws Exception;
int dequeue() throws Exception;

void makeEmpty();
} The public interface of a

queue should be the same
for both the array-based and

linked implementations

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array) - Implementation

Queue Array-based Implementation
 Keep track of the front and rear indexes

 Rear is the actual index of the last element.
 Front is positioned one before the front element.
 If Front and Rear are equal then the queue is empty.

 Note: Other implementation may give code for an
array-based queue where front indicates the actual
first element and rear indicates the actual last
element. This is not the same as the slide
implementation given here.

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array) - Implementation

public class QueueArrayBased implements Queue {
Declare int front // An array index. One BEFORE the first element.
Declare int rear // An array index. The actual last element.
Declare int max // Need to know the size of the array
Declare int items[] // Array stores the queue data
// Public members go here…

[0] [1] [2] …. [M..]
queue

.items

.front

.rear

Physical Level

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array)

 Rear is the actual index of the last element.
 Front is positioned one before the front element.
 If Front and Rear are equal then the queue is

empty.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

0000000 000

9

9
10

Queue (Array)

 What does a queue look like internally using an
array-based implementation assuming we run
the following code…

Declare Queue q
Set q to new QueueArrayBased() instance

q.enqueue(11) // Adds to queue
q.enqueue(14) // Adds to queue
q.enqueue(32) // Adds to queue

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array)

 Rear is the actual index of the last element.
 Front is positioned one before the front element.
 Only the rear index changes when you enqueue.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

0000321411 000

9

2
10

Queue (Array)

 Now remove an element from the queue…
Declare item // Gets returned value
Set item to q.dequeue() // Removes

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

0000321411 000

9

2
10

What
happens?

Queue (Array)

Declare int item
Set item to q.dequeue()

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

0000321411 000

0

2
10

Front is moved one element.
Logically removes first element.

Note: Front stands for the index that is
one before the first element.

Queue
elementsRemoved

Queue (Array) - Dequeue

dequeue() returns int throws Exception
Declare int item

if (queue is empty)
throw exception "Empty Queue"

else
Set front to (front + 1) % max
Set item to items[front]

return item

1. Increment the
front index

2. Get the data
to return

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array)

 Now run the following…
q.enqueue(77)

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

0000321411 000

0

2
10

Queue (Array)

 Rear is now index 3. 77 is on the queue.
 Note: Only 14, 32 and 77 are actually on the

queue.

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

00077321411 000

0

3
10

Queue (Array) - Enqueue

enqueue(int item) throws Exception

if (queue is full)

throw exception "Full Queue"

else

Set rear to (rear + 1) % max

Set items[rear] to item

Update rear.
Add 1 to rear to

make it go to the
next index. Max is

the size of the
underlying array, so
you need to mod by

that in case rear
went off the end.

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array)

 Now look at the next queue and
determine which elements are on it…

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array)

 Which elements are actually on the queue?

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

2633977124255 806751

6

2
10

Queue (Array)

LOGICALLY THE QUEUE IS:
Queue Elements: 51, 67, 80, 55, 42, 12

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

2633977124255 806751

6

2
10

Front
Index

Rear
Index

Actual
First

Element

Queue (Array)

 Now run the following code…
q.makeEmpty()

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

2633977124255 806751

6

2
10

What
happens?

Queue (Array)

 EMPTY QUEUE
 Front and rear indexes are equal.

LOGICALLY THE QUEUE IS EMPTY!

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

2633977124255 806751

9

9
10

Queue (Array)

 What does a full queue look like internally?

© 2022 Arthur Hoskey. All
rights reserved.

Queue (Array)

 FULL QUEUE
 Front element unusable!
 10 element array but
can only hold 9 elements

© 2022 Arthur Hoskey. All
rights reserved.

Queue

0 1 2 3 4 5 6 7 8 9

Front Max
Rear

2633977124255 806751

7

6
10

Front
Index

Rear
Index

Actual
First

Element

QueueArrayBased Constructor
Set max to 10
Set items to new int[max]
Set front to max - 1
Set rear to max - 1

isEmpty() returns boolean
return (rear == front)

isFull() returns boolean
return ((rear + 1) % max) equals front

makeEmpty()
Set front to rear

Queue (Array) – Other functions

Note: This queue only holds 9
elements. If you want the queue

to hold 10 elements then you
need to set max to 11.

© 2022 Arthur Hoskey. All
rights reserved.

Big-O Comparison – Queue (Array)

Operation Cost

makeEmpty O(1)

isFull O(1)

isEmpty O(1)

enqueue O(1)

dequeue O(1)

Constructor O(1)

© 2022 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

